536 research outputs found

    Action Potential Onset Dynamics and the Response Speed of Neuronal Populations

    Full text link
    The result of computational operations performed at the single cell level are coded into sequences of action potentials (APs). In the cerebral cortex, due to its columnar organization, large number of neurons are involved in any individual processing task. It is therefore important to understand how the properties of coding at the level of neuronal populations are determined by the dynamics of single neuron AP generation. Here we analyze how the AP generating mechanism determines the speed with which an ensemble of neurons can represent transient stochastic input signals. We analyze a generalization of the θ\theta-neuron, the normal form of the dynamics of Type-I excitable membranes. Using a novel sparse matrix representation of the Fokker-Planck equation, which describes the ensemble dynamics, we calculate the transmission functions for small modulations of the mean current and noise noise amplitude. In the high-frequency limit the transmission function decays as ω−γ\omega^{-\gamma}, where γ\gamma surprisingly depends on the phase θs\theta_{s} at which APs are emitted. In a physiologically plausible regime up to 1kHz the typical response speed is, however, independent of the high-frequency limit and is set by the rapidness of the AP onset, as revealed by the full transmission function. In this regime modulations of the noise amplitude can be transmitted faithfully up to much higher frequencies than modulations in the mean input current. We finally show that the linear response approach used is valid for a large regime of stimulus amplitudes.Comment: Submitted to the Journal of Computational Neuroscienc

    Fingerprints of classical diffusion in open 2D mesoscopic systems in the metallic regime

    Full text link
    We investigate the distribution of the resonance widths P(Γ){\cal P}(\Gamma) and Wigner delay times P(τW){\cal P}(\tau_W) for scattering from two-dimensional systems in the diffusive regime. We obtain the forms of these distributions (log-normal for large τW\tau_W and small Γ\Gamma, and power law in the opposite case) for different symmetry classes and show that they are determined by the underlying diffusive classical dynamics. Our theoretical arguments are supported by extensive numerical calculations.Comment: 7 pages, 3 figure

    An Examination of Adult Bullying in the K-12 Workplace: Implications for School Leaders

    Get PDF
    The issue of bullying in K-12 schools usually brings images of students to mind, but a recent quantitative study of a sample from K-12 school personnel in Michigan showed that 27.8% of adults in the K-12 workplace consider themselves the target of an adult bully. This study calls for school leadership to recognize and proactively address the issue of workplace bullying in K-12 schools through policy, procedures, training, prevention, enforcement, and positive resolution to provide a safe, non-threatening environment in which to work and learn

    Levy Flights in Inhomogeneous Media

    Full text link
    We investigate the impact of external periodic potentials on superdiffusive random walks known as Levy flights and show that even strongly superdiffusive transport is substantially affected by the external field. Unlike ordinary random walks, Levy flights are surprisingly sensitive to the shape of the potential while their asymptotic behavior ceases to depend on the Levy index μ\mu . Our analysis is based on a novel generalization of the Fokker-Planck equation suitable for systems in thermal equilibrium. Thus, the results presented are applicable to the large class of situations in which superdiffusion is caused by topological complexity, such as diffusion on folded polymers and scale-free networks.Comment: 4 pages, 4 figure

    Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

    Full text link
    A two dimensional self-gravitating Hamiltonian model made by NN fully-coupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is observed up to a time Ï„\tau that increases linearly with NN. Therefore, the finite particle number acts like a white noise source for the system, inhibiting anomalous transport at longer times.Comment: 10 pages, Revtex - 3 Figs - Submitted to Physical Review

    Metal-insulator transitions in cyclotron resonance of periodic nanostructures due to avoided band crossings

    Full text link
    A recently found metal-insulator transition in a model for cyclotron resonance in a two-dimensional periodic potential is investigated by means of spectral properties of the time evolution operator. The previously found dynamical signatures of the transition are explained in terms of avoided band crossings due to the change of the external electric field. The occurrence of a cross-like transport is predicted and numerically confirmed
    • …
    corecore